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A new method is presented for numerically generating boundary-fitted coordinate systems 
for arbitrarily curved surfaces. The three-dimensional surface has been expressed by functions 
of two parameters using the geometrical modelling techniques in computer graphics. This 
leads to new quasi-one- and two-dimensional elliptic partial ditferential equations for coor- 
dinate transformation. Since the equations involve the derivatives of the surface expressions, 
the grids generated by the equations distribute on the surface depending on its slope and cur- 
vature. A computer program GRID-CS based on the method was developed and applied to a 
surface of the second order, a torus and a surface of a primary containment vessel for a 
nuclear reactor. These applications confirm that GRID-CS is a convenient and effkient tool 
for grid generation on arbitrarily curved surfaces. 0 198s Academic press, Inc. 

I. INTRODUCTION 

Boundary-fitted curvilinear coordinate systems have been commonly used in the 
solution of partial differential equations for regions with arbitrarily shaped boun- 
daries. A general method for generating the three-dimensional coordinate systems 
has been developed by Mastin and Thompson [l]. The method is based on the 
numerical solution of three-dimensional elliptic partial differential equations with 
Dirichlet boundary conditions. It is, however, difficult to specify the coordinates of 
grid points on the boundary surfaces for geometrically complicated surface. 

Thomas [2] has proposed a method of automatically generating grids on a sur- 
face specified by the equation z = F(x, y). A quasi-two-dimensional elliptic system 
has been then derived which takes the curvature of the surface into account. The 
method has been then applied to grid generation of an aircraft wing-body com- 
bination. However, use of the equation z = F(x, v) for a surface representation 
limits its flexibility for adaption to a broad variety of curved surfaces. 
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In the present paper, the method of Thomas is extended to grid generation of an 
arbitrarily curved surface. Introducing geometric modelling techniques developed in 
the area of computer graphics, a curved surface is represented by the equations 
x =f(s, t), y = (s, t), and z = h(s, t) using two parameters s and t. A new quasi-two- 
dimensional elliptic system is derived for such surface representation, and also a 
quasi-one-dimensional elliptic system has been derived for curved lines of the sur- 
face edges. These two systems take the slope and curvature of the surface or curved 
line into account. On the basis of these elliptic systems, a new computer program, 
called GRID-CS, is developed. Its capabilities and applications are also presented 
here. 

II. MATHEMATICAL FORMULATION 

A. Quasi-Two-Dimensional Elliptic System 

Three-dimensional boundary conforming grid coordinates are calculated by solv- 
ing the following elliptic system of quasilinear equations [l, 21, 

ad% + Prt;) + a2(rttq + Qr,) + a3(rcc + Rri) + 2(Plrgq + 82r,,5 + P3rct) = 0, (1) 

where 

r = 6, Y, z), (2) 

al = (Ir,l lrrl I’- (rq. q)*, (W 

a2 = (Iril b-51 I* - (ri* rt)*, (3b) 

a3 = (Irtl lrrll 1’ - (rt. r,)*, (3c) 

PI = (r,. rrNrr. f-0 - (rt. rrl) lril 2T (3d) 

82= (ri. rt)(rg*r,)- (rS‘ ri) lr512, W 

83 = (r 5. rJ(rq. ri) - 6-i. rt) lrv12. WI 

Here, (x, y, z) and (5, q, {) are coordinates in physical and transformed spaces; the 
subscripts 5 and <t indicate the first- and second-order partial derivatives with 
respect to 5, and P, Q, and R, are functions to control grid spacings. 

Thomas [2] derived from the above system a quasi-two-dimensional elliptic 
system using the following assumptions: 

(1) The surface is represented as a coordinate surface c = const (see Fig. 1). 
(2) The c-directed transverse coordinate lines are orthogonal to the surface 

i = const. 
(3) The principal curvatures of the g-directed coordinate lines vanish locally 

at the surface. 
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FIG. 1. Curvilinear coordinates on a curved surface. 

Orthogonality is written as 

(4) 

and the third assumption is expressed by 

(5) 

Substituting Eqs. (4) and (5) into Eq. (1) and eliminating the variable R in the first 
two scalar components of Eq. ( 1) using the third one, the following two scalar 
equations are obtained, 

hl* ~(X,,+~x,)+~(z,,+~z,)} + Iql* ((~,,+Qx~)+~(z~~fQz,)} 
- 2(r [ * r&y, + ~Z&) = 0, (64 

hl* {(.k +pYt;)+ W&C +&>> + lr512 {(y,,+ Qy,) + w(z,, + Qz,)} 

-Wt. r,)(~~~ + w-q,) = 0, (6W 

where 

Thomas derived the final 
function z = F(x, JJ) which 

In the present method: 

elliptic system by eliminating z in Eqs. (6) using the 
specifies a surface, 
all Cartesian coordinates X, y, and z in Eqs. (6) are 
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eliminated using the following function that defines the surface, (hereafter called 
surface functions), 

x =f(s, t), (74 

y = g(s, t), (7b) 

z = h(s, t). (7c) 

The first- and second-order derivatives of x are obtained, by partially differentiating 
Eq. (7a) with respect to < and/or q, 

x,=f,s,+f*t,v @a) 

x,=f,s,+f,t,, WI 

X55=f,S:+2f*sgtS+fttt:+f,srr+frtre, (8c) 

x,?=f,s~+2f,,s,t,+f,,t:+f,s,,+f,t,,, W) 

X51=fsssgs,+fsr(sgt,+s,t5)+frrt5t,+f,sC~+fttr,. V-W 

Substituting Eqs. (8), and similar derivatives of y and z into Eqs. (6) and 
manipulating the resultant equations algebraically, a new quasi-two-dimensional 
elliptic system can be obtained, 

lr412 (~55 + PSC) + lrr12 (sqv + Qs,) - 2(rr. rv) s,, + J2@ = 0, Pa) 

lr,l* (ttt+f’tt)+ lrtl* (t,,+Qt,)-2(rS*r,) t,,+J’y=O, Pb) 

where J denotes the two-dimensional Jacobian determinant, 

and the nonlinear coefficients are scalars that can be evaluated from the surface 
functions f(s, t), g(s, t), and h(s, t) as follows: 

Ir,12=Ds:+Et:--Fsqtv, 

Irc/2=Ds:+Et:-Fsgt5, 

(rc~r,)=Ds,s,+Etetv-~(s~tv+s,t~), 

@=(A,D+A2E+A,F)/(A2+B2+C2), 

Y= (A,D + A,E+ A,F)/(A2 + B2 + C’), 

~I=~IL,+B,~,,+BA, 
A2=B,f,+&gss+&L 
A,=B,f,,+B,g,,+W,,, 
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A4 = B4frt + B, g,, + B&t,, 

As=&fis+&gss+&h,, 
&=&L,+Bsg,,+Bd,z, 
B, = Ag,+ Ch,, 

4 = -M-i + Bh,), 

4=&t--ft, 
B4 = 4&s - W, 

B, = Afs + Bh,, 

&=Cfs-&,, 

A =Lg,--fig,, 
B= gth, - gsh,, 
c=Lh,-fA 
D=f;+g;+h;, 
E=f:+g:+h:, 

F= -2tfsft + g, g, + hsh,). 

The functions P and Q in Eqs. (9) may be chosen to make the grid to concentrate 
as desired. The following are obtained by modifying the forms incorporated in the 
TOMCAT program of Thompson et al. [3], 

p(5~ VI= - f 41 sgn(5-ri)exPC-bil(ci11(5-ri)2+Ci21(~-l]i)2}1’2], 

i=l 
(104 

Q(t,rl)= - f ai2Sgn(?-?i)exPC-bi2{Ci12(5-5i)2+Ci22(tl-tli)2}1’21. (lob) 
i= 1 

As shown in Fig. 2, Eqs. (9) give the relationship between the two planes: the 
5 - q computational plane and the s - t parameter plane, and Cartesion coordinates 
in a physical space can be evaluated by Eqs. (7). Eqs. (9) can thus generate a quasi- 
two-dimensional coordinates system on the s - t parameter plane. The curvature of 
the surface is taken into account through the terms involving the functions @ and 
Y. In the case of a plane surface, where the surface functions can be given by 

x=f(s, t)=s, 

Y = g(4 t) = 4 
z = h(s, t) = 0. 

The functions @ and Y become zero and Eqs. (9) reduce to the two-dimensional 



72 TAKAGI ET AL. 

plane equation [3]. Equations (9) also become identical to the elliptic system 
deduced by Thomas in the following case, 

x =f(s, t) = s, 

Y = g(s, t) = t, 

z = h(s, t) = F(s, t). 

B. Quasi-One-Dimensional Elliptic System 

Quasi-two-dimensional grid coordinates on a curved surface can be calculated by 
solving Eqs. (9) with grid coordinates specified on the curved edges of the surface 
as Dirichlet boundary values. To automatically generate grids on the curves, a 
quasi-one-dimensional elliptic system is derived under the following assumptions: 

(1) The curve is represented as a t-directed coordinate line defined by 
ye = const. and <-const. 

(2) The q- and i-directed transverse coordinate lines are orthogonal to the 
line specified by assumption (1). 

(3) The principal curvatures of the II- and c-directed transverse coordinate 
lines vanish locally at the l-directed line. 

These assumptions give the following relations in addition to Eqs. (4) and (5), 

Substituting Eqs. (4), (5), and (11) into Eq. (1) and eliminating the variables R and 
Q in the first scalar component of Eq. (l), the following scalar equation is obtained, 

xctxr< + %I + Yc(Yt;, + PY<) + z&e< + Pz,;) = 0. (12) 

The curved line can be represented by Eqs. (7) 

x =f(o, t) = i(t), (134 

Y = do, t) =At), (13b) 

z = h(0, t) = k(t), (13c) 

where the curve is assumed to be edge @ of the curved surface as shown in Fig. 2. 
The other three edges can be represented in the same way. The first- and second- 
order derivatives of x are given using Eqs. (13) as 

xg = i,t<, VW 

X,===l,,tf+l,tt;~. (14b) 
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(b) s-f parameter plane k) F, - n computational plane 

FIG. 2. Transformation from Cartesian coordinate system to 5 - 9 computational plane. 

Substitution of Eqs. (14) and similar derivatives of y and z into Eq. (12) then yields 
a quasi-one-dimensional elliptic system. 

The curvature is taken into account through the last term involving derivatives of 
the functions i, j, and k. In the case of a straight line represented by 

x = i(f) = t, 

y=j(t)=O, 

z=k(t)=O, 

Eq. (15) reduces to a one-dimensional elliptic system. 

III. COMPUTER PROGRAM AND APPLICATIONS 

A. Description of GRID-CS Program 

A new computer program GRID-CS has been developed on the basis of Eqs. (9) 
and (15). Figure 3 illustrates its calculational flow. Grids on a curved surface are 
generated by the following four steps: 

Step 1. A curved surface is specified by the surface functions, Eqs. (7), which 
can not only be given as mathematical functions in advance but can also be 
automatically generated by providing a small number of grid points on the surface. 
Geometric modelling techniques are used to fit the input grid points smoothly as 
described in the next section. 
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Specify the surface expression 

by either fitting input grid points 

or using mathematical functions 

Calculate grid coordinates on 

the four edges of the surface (Eq.(l5)) 

Calculate grid coordinate on s-t 

parameter plane (Eqs.(SN 

Transform the calculated grid 

coordinates on s-t parameter 

plane onto the physical space (Eqs.(7)) 

FIG. 3. Calculation steps in GRID-CS. 

Step 2. Grids on the four curved edges of the surface are generated by solving 
the quasi-one-dimensional elliptic system, Eq. (15). 

Step 3. Grids on the s - t parameter plane are generated by solving the quasi- 
two-dimensional elliptic system, Eqs. (9), with the boundary grids obtained in 
Step 2 as Dirichlet boundary conditions. 

Step 4. The grids on the s - t parameter plane are transformed to the physical 
(x, y, z) space using Eqs. (7). 

B. Curved Surface Fitting by Geometric Modelling Technique 

The program GRDI-CS is capable of generating the surface expression, Eqs. (7). 
The entire surface is obtained by the summation of bilinearly blended Coons 
patches. As shown in Fig. 4, every patch is composed of four input points as corner 
points. The four edges of a patch can be expressed by modified Bezier curves [4] in 
advance of the patch calculation. 

In the modified Bezier curve representation, the equation, U, of the line segment 
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J DATA 

FIG. 4. Curved surface as a summation of bilinearly Coons patches composed of four input points 
and variables related to the function Q,. 

between input grid points rii and ri+ li shown in Figs. 4 and 5, is written in vector 
forms, 

U, = (1 - u)3 rij + 3u( 1 - u’) riil + 3u2( 1 - 2.4) rii2 + u3ri+ rj, O<U<l, (16) 

where the u coordinate is defined in a line segment, and riil and riiz are coordinate 
vectors of unknown points which control the shape of a line segment. A line 
segment, U, must be connected to the neighboring segments, Ui- rj and Ui+ rj 
smoothly with the same slope and curvature at the boundaries, rii and ri+ ?i. Hence 
the following vector equation must be satisfied [4], 

where 

B,+2k,(l +k,) B,+,+k:ki+,Bi+.=A,+k~Ai+,j, 

C,= k,B,+ ,j, 

Aii=ri+?i-rii, 

B, = rij, - rti, 

Cv=ri,y-Yij2, 

(174 

(17b) 

FIG. 5. Modified Bezier curves (-) and controlling lines (---). 
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and a constant k, can be decided on, depending on the absolute value of A,, [4]. 
By solving Eqs. (17) with one of the fixed, natural, and periodic boundary con- 
ditions, the unknown coordinate vectors rijt and rii2 are obtained, and U, is 
calculated by Eq. (16). 

The bilineary blended Coons patch can be expressed using not only four corner 
points but also four edge lines, which leads more precise surface representation than 
the simple bilinear patch using only the corner points. The bilinealy blended Coons 
patch composed of coordinate vectors, rii, ri+ ,j, rii+ , , and ri+ ,j+ i is expressed by, 

Q,(u, u)= Cl---u ~1 [v;($] + [u&4 U~+AU)I [‘J”] 

-[l-U u] 
c 

rii rij+l 1-O 

rif lj ri+ lj+ 1 I[ 1 v ' 
(18) 

where u and v are coordinates defined on a surface patch shown in Fig. 4 and have 
the values between zero and one, and U,, V,, etc., are the equations of line 
segments given by the modified Bezier curves. The three scalar components of 
Eq. (18) give the surface expression, Eqs. (7) in each patch with the help of the 
following relations between (s, t) and (u, u), 

u+i-1 
‘=ZDATA- 1’ 

v+j-1 
t=JDATA- 1’ 

where i and j define the region of a patch as shown in Fig. 4. IDATA and JDATA 
represent the number of input points in the i and j directions, respectively. 

C. Numerical Results and Discussions 

The program GRID-CS has been applied to grid generation for three kinds of 
curved surfaces. Figures 6-8 show calculated grids, and edge numbers defined in 
Fig. 2. 

The first example is the surface of the second order given by the following 
functions: 

x = 8s, 

y = 12t, 

z = 14.4t(t - 1) - 19.2s(s - 1). 

The 961 calculated grids on the surface are shown in Figs. 6a and b for a perspec- 
tive projection and a projection on x - y plane, respectively. The latter has a non- 
uniform grid distribution because the program GRID-CS can take the slope and 
the curvature of a surface into account through Eqs. (9). The program can generate 
as many grids as one hopes by changing only the input data of the maximum num- 
bers in the s and t directions. 
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FIG. 6. (a) Perspective projection of a surface of the second order. (b) Projection on x - y plane of a 
surface of the second order. 

The second example demonstrates an application to the surface of a 120-degree 
segment of a torus. Figure 7a shows 961 generated grids from 64 input points by 
using the curved surface fitting technique described in Section 1II.B. The coor- 
dinates of the input grid points were given by the following function, 

x=R-(R-rcosB)coscp, (194 

y=(R-rcos8)sincp, (19b) 

z = r sin 8, (19c) 

where R and r are major and minor radii of the torus, respectively. In this case R 
and r are 6 and 4, respectively. 8 and rp are angles along poloidal and toroidal direc- 
tions, respectively, as shown in Fig. 7c. The maximum deviation of the generated 
grid points from the original torus expressed by Eqs. (19) is less than 0.6 % of the 
minor radius. Figure 7b shows the grid concentration in a particular region on the 
upper half of the 120-degree segment of the torus by using the controlling functions 
P and Q. The coefficients used in P and Q have the following values. 

m = 2, n=2 

t1= 1, 
a,,- 21-~~~~~~r_o:1=‘7 

?2 = 31, 

-a - - . 7 

b,,=b2~=b12=b22=0.1, 

clll=c2ll=c122=c222=1, c121=c221=c112=c212=o. 

The last example presents the grid generation on the surface of a primary con- 
tainment vessel for a nuclear reactor. Figure 8a shows 400 generated grids on half 
of the vessel from 60 input points obtained from a vessel plan. Figure 8b shows the 
liner grid structure on the upper one-third of the vessel, in which 896 grids are 
generated from 48 input points. 
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FIG. 7. (a) Perspective projection of a 120-degree segment of a torus. (b) Perspective projection of 
the upper half of a 120-degree segment of a torus with concentrated grids. (c) Definition of variables 
used for a torus. 

The finite element method has geometrical advantages for matching complicated 
boundaries, but it requires much experience and time for constructing appropriate 
grid points. The three-dimensional boundary element method analyzes the physical 
quantity of interest on the domain surface. It has the same problems inherent in 
constructing grids. The grid points on the curved surface can be obtained by setting 
the small divisions of s and t in Eqs. (7). But the grids automatically generated by 

b 

FIG. 8. (a) Perspective projection of a half of a primary containment vessel for a nuclear reactor. 
(b) Perspective projection of the upper one-third of a primary containment vessel for a nuclear reactor. 
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the present method would be more appropriate to the analysis by the boundary 
element and finite element method. Because the method takes the surface slope and 
curvature into account. 

IV. CONCLUSION 

A new method has been presented for numerically generating boundary-fitted 
curvilinear coordinate systems for arbitrarily curved surfaces. The method uses the 
geometrical modelling techniques of modified Bezier curves and bilinearly blended 
Coons patches for expressing a curved surface using the parameter. The surface 
expressions can be specified by giving the small number of representative points. On 
the basis of such surface expressions, new quasi-one- and two-dimensional elliptic 
partial differential equations were derived for coordinate transformation. Since the 
equations involve the derivatives of the surface expressions, the grids generated by 
the equations distribute on the surface depending on its slope and curvature. 

A computer program GRID-CS was developed by means of the method, and was 
applied to (a) a surface of the second order, (b) a torus, and (c) a surface of a 
primary containment vessel for nuclear reactor. These applications confirmed that 
GRID-CS is a convenient and efficient tool for generation of quasi-two-dimensional 
grids on arbitrarily curved surfaces. 

Grids numerically generated by GRID-C& can be used as Dirichlet boundary 
conditions for the computer program GRID-3D [6], which can generate three- 
dimensional grids within a complicated geometry consisting of many different com- 
ponents. The grids from GRID-CS could also be used as nodal points in the finite 
element and the boundary element methods. Therefore GRID-CS could 
significantly improve productivity of computer-aided-design (CAD). 
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